EDMA310/360 Mathematics unit planner

Sarah Collins

Unit Overview

Unit title:

An Introduction to Decimal Fractions

Content maths area:

Decimal Fractions
Grade/year level:
Grade 5 and AusVELS level: Year 5

Learning Focus (ideas extrapolated from AusVELS):

Content Strand: Number and Algebra
Sub-strand: Decimals
Proficiency strands:
Understanding includes making connections between representations of numbers, using fractions to represent probabilities, comparing and ordering fractions and decimals and representing them in various ways
Reasoning includes investigating strategies to perform calculations efficiently, continuing patterns involving fractions and decimals.

Rationale:

It is necessary for students to learn the mathematical content area of Decimal Fractions, since decimal notation is an important part of basic numeracy. Fractions, decimal fractions, and percentages all interconnect as they are different ways of representing numbers, which also uses multiplicative processes (Moody, 2008). Decimal Fractions is the most commonly used mathematical content in reallife contexts, such as money and measurement.

Assumed prior knowledge of students:

It is assumed that students' prior knowledge for Decimal Fractions includes an understanding of whole number, place value, and fractions (Wright 2004). By a Year 5 level, students would have experienced investigating equivalent fractions, skip counting in fractions (by quarters, halves, and thirds), as well as locate and represent these on a number line. Also students have recognised that the place value system can be extended to tenths and hundredths. Students make connections between fractions and decimal notation (AusVELS, 2014).

Grouping strategies to support learning:

Students will be grouped in pairs or small groups as this naturally encourages students to collaboratively discuss and solve a problem, while explaining their reasoning (Irwin, 2001).
These groups will be organised as mixed ability, as this provides a support base for students to openly discuss ideas and solve conceptual problems in various different ways, while using questions, representing ideas, and making connections as a group (Boaler, 2008).

Overview of assessment:

Formative and self assessment strategies will be used throughout the Unit Planner, such as journal writing, anecdotal notes, checklists, and observations (Van de Walle, 2013). Each individual student will keep a journal and write any struggles, understandings, and/or questions to show their progress and conceptual understanding of decimal fractions. These assessment strategies are formed around tasks that require the learner to compare, order, and benchmark decimal fractions to further their understanding of the relative size of decimals (Roche, 2005).

References:

AusVELS. (2014). Mathematics. The Australian Curriculum in Victoria. Retrieved: http://ausvels.vcaa.vic.edu.au
Boaler, J. (2008). Promoting 'relational equity' and high mathematics achievement through an innovative mixed-ability approach. British Educational Research Journal, Vol. 34, No. 2, pp. 167-194. Retrieved: http://www.tandfonline.com/doi/pdf/ 10.1080/01411920701532145

Irwin. (2001). Journal for research in mathematics education. Vol. 32, No. 4, pp. 399-420. Retrieved: http://www.jstor.org/stable/749701
Moody, B. (2008). Connecting the point: Investigation into student learning about decimal numbers. University of Waikato: New Zealand. Retrieved: http://leo.acu.edu.au/pluginfile.php/985732/mod folder/content/0/Moody\%2C\%20B. \%20\%282008\%29.\%20Connecting\%20the\%20point Investigation\%20into\%20student\%20learning\%20about\%20decimal \%20numbers.\%20.pdf?forcedownload=1

Roche, A. (2005). Longer is larger-or is it? Australian Primary Mathematics Classroom, 10(3), 11-16. Retrieved: http://search.informit.com.au/fullText;dn=199049752974381;res=IELHSS

Van W., Karp, K., \& Bay-Williams, J. M. (2013). Elementary and middle school mathematics: Teaching developmentally (8th ed.). Boston: Pearson.

Wright, V. (2004). Decimals: Getting the point. The University of Waikato. Retrieved: Wright, V.(2004) Decimals Getting the point.pdf

Possible misconc the mathematical idea/topic - Whole number - Longer is larger - Shorter is larger - Zero means 'no - Reciprocal think - Negative thinkin	thinking r thing' king ng	sconceptions re t develop):	lated to	Key probing question develop understanding to be -5 probing questions): - What is the role of th - How do know which - Where is the tenths, thousandths? - What strategies can	NS (focus questions used during the sequ e zero in decim decimal is large hundredths, an we use to comp	ions?	d to Link ; 3 focus, ls?	her context events, literature als in real life Measureme s ility	etc.): COn nt	le, e.g., inquiry unit
Learning strategies/ skills Analy Clecs Conssider Considering Desig Elabo	alysing ecking perating ring options signing orating	Estimating Explaining Generalising Hypothesising Interpreting Justifying		Listening Locating information Making choices Note taking Observing Ordering events Organising	Performing Persuading Pranning Prediciting Presenting Providing foedack Questioning	$\begin{array}{r} \mathrm{Re} \\ \mathrm{Recog} \\ \mathrm{Re} \\ \mathrm{Re} \\ \mathrm{Res} \\ \mathrm{Re} \\ \mathrm{Re} \\ \hline \end{array}$	Reading eflecting eporting estating Revising		rns nation as g g	Testing Viewing Visually representing Working independently Working to a timetable
MATHEMATICAL FOCUS (what you want the children to come to understand as a result of this lesson - short, succinct statement)		NG IN' ASS FOCUS) ask relating to the n; sets the scene/ t. e.g., It may be a pider diagram, an a story)		'INVESTIGATIONS SESSION' INDEPENDENT LEARNING) nded opportunity for students to work in pairs, small groups or ren's thinking or work with a small up for part of the time and to also conduct roving conferences)		\& TIONS us) s and he idren to occur at y walk,	$\left\lvert\, \begin{array}{r}\text { AD } \\ \text { (to allow tho } \\ \text { to engage } \\ \text { related to } \\ \text { (question } \\ \text { (hinkin }\end{array}\right.$	TIONS prompt eriencing difficulty ve experiences prompt xtend students' initial task)		SSESSMENT TRATEGIES elate to objective. Includes e teacher will listen for, e, note or analyse; what at criteria will be used to alyse the evidence)
Session 1 - Students will be able to identify which decimal is larger, using decimals with one decimal place (tenths).	Walk ab Ragged be displ room. Compar fractions For exa larger 4 Which d between Discuss hundred thousan	uiz mal cards will around the e decimal ther. which is $4.2,3.15 ?$ fraction is in and $4.6 ?$ nths, nd	Fish Mod Can large Spin (App In gro decim spinn large to on (benc Adap (Dow	Bowl el activity for students. you show me which is r? ner and Decimals endix 1) roups of 3 , students flip mal cards and use the ner to justify which is r, closer to one, closer ne half, or closer to zero chmarking). ption of Spin to Win: wnton, 2014).	Whole Class Discuss any misconception What does the represent in th place?	sion	Enablin Use benc strategy small gro fractions Use thre where on What is represen Which de than 0.5? Extendin Using the order from largest and choices.	mpt: king mpare a decimal lash cards. imal cards, one half (0.5) alf s a decimal? l is larger ompt: mal cards, allest to tify their		will record tal notes for 3 focussing on: uage used y to identify the r decimal they reason their e.

Session 2 Students will be able to identify decimals in between two decimal fractions with 2 decimal places (tenths and hundredths).	Fruit Shoot Interactive Game (Appendix 2) Whole class plays Fruit Shoot to compare decimals; larger/smaller/ same as.	Spinner and Decimals Students in pairs, use the decimal cards and spinner to justify which is closer to one, closer to one half, and closer to zero. Students then find and reason 3 decimal fractions that are in between the two decimal cards that they flipped. (Appendix 2)	Whole Class Discussion What effect does zero have on the tenths and hundredths place? Is 1.2 and 1.20 the same decimal fraction?	Enabling prompt: Using pegs labelled with decimal fractions of tenths and hundredths. Students order smallest to largest, using benchmarking skills. Extending prompt: Students use a ruler to measure various objects around the room to identify and record the tenths and hundredths.	Teacher explores students' perceptions of decimal fractions through their journal writing. Focus on: 1. Any misconceptions 2. Understandings of tenths and hundredths 3. Fractional language
Session 3 Students will identify tenths, hundredths, and thousandths as a symbol and as a representation.	Receipt strip activity Mark the strip on the floor with 1 at one end and 3 at the other. Students write a decimal fraction on a sticky note and then place their number on the strip. Fish bowl Does this number belong on the strip? Why/why not? Compare decimals together. For example, is 2.1 and 2.10 the same, larger, or smaller? Why do you say that? As a class, reorder decimals on the strip from smallest to largest.	Demonstrate Decimat activity. How are tenths, hundredths, and thousandths represented on a decimat? Decimat and Cards (Appendix 3) In groups of three, students will flip cards and shade in their individual decimat. Whoever has the largest decimal fraction wins. How do you know which is larger? Students will use fractional language e.g. $8.3=$ Eight and three tenths. (Adaption of Decimat game Roche, 2010)	Whole Class Discussion What happens if we add zeros to these decimal fractions? $0.180,0.108,0.018$ Which one is bigger? What effect does the zero have on each of these decimal fractions?	Enabling prompt: Teacher leads a small group of students and identifies tenths, hundredths, and thousandths on the decimat. Together, represent decimals of two decimal places on the decimat. Extending prompt: How many different ways can you represent the decimal fraction on the decimat?	Teacher uses sticky notes to observe students understandings of tenths, hundredths, and thousandths. Identify: 1. Connection between symbol and representation. 2. Fractional language used 3. What reasons were given?

Session 4 Students will justify and reason to make the largest decimal fraction possible using only tenths, hundredths, and thousandths.	Scooter Quest Interactive Game (Appendix 4) Whole Class activity focusses on various decimals fractions. Which number is in the tenth/hundredth/thousandth place?	Model Decimat Activity Using fractional language, which number should go in the tenths, hundredths, and thousandths, to make the largest number? Decimat and Dice (Appendix 4) In groups of 3, students roll 3 dice and make the largest decimal fraction using tenths, hundredths, and thousandths. For example: Roll 2, 6, 1 can make 0.621 Students then colour in the decimat to represent this decimal fraction.	Whole Class Discussion What strategies can we use when when comparing decimal fractions? E.g. Look at the tenths column first of each decimal fraction to see which is larger/smaller.	Enabling prompt: Students use paper folding to create their own decimat to understand tenths, hundredths, and thousandths. Extending prompt: How many different ways can you represent the decimal fraction on the decimat? Use a ten-sided dice (0-9) to increase the range of numbers.	Teacher uses checklist, do students understand place value: 1. Where are tenths, hundredths, and thousandths in a decimal fraction? 2. Reason as to why their decimal fraction is the largest.
Session 5 - Students will connect the symbol, oral, and, representation of decimal fractions using the place value system.	Decimal Bingo (Appendix 5) Using the Decimal Bingo activity sheet, students colour in the number the teacher calls using fractional language e.g. 7.43 = Seven and fortythree hundredths.	Decipipes and Dice (Appendix 5) In groups of 3, students roll 3 dice to make the largest decimal fraction using tenths, hundredths, and thousandths. Similarly to the Decimat and Dice activity, students create the largest decimal and represent this with decipipes.	Whole Class Discussion Students in a circle with notebooks. Teacher rolls the three dice. Students write the largest possible decimal fraction. Share ideas. Write various different ways to express the largest number. For example: 0.375 can be: Three hundred and seventy-five thousandths Thirty-seven hundredths and five thousandths Three tenths, seven hundredths, and five thousandths.	Enabling prompt: Students use decimal cards and hundred square to compare the sizes of decimal fractions. Where is the tenths, hundredths and thousandths column? Extending prompt: Students write down various ways to express the decimal fraction, as seen in whole class discussion.	Teacher uses anecdotal notes and students' journal writing to evaluate how well students understand place value in decimal notation. 1. Do students use fractional language? 2. Understand the link between tenths, hundredths, and thousandths. 3. Do students correctly represent the decimal fraction using decipipes? 4. Can students identify which decimal is larger?

Appendices

Appendix 1-Session 1
Spinner (Downton, 2014)

0	0.1	0.2
0.3	0.4	0.5
0.6	0.7	0.8

Appendix 2-Session 2

Fruit Shoot- Interactive Game

Spinner (Downton, 2014)

http://www.sheppardsoftware.com/mathgames/decimals/CompareDecimals.htm

0.1	0.2	0.3	0.4
0.5	0.6	0.7	0.8
0.9	0.11	0.12	0.15
0.16	0.21	0.23	0.24
0.28	0.34	0.35	0.37
0.41	0.45	0.47	0.49
0.51	0.54	0.55	0.57

http://www.teacherspayteachers.com/Product/Decimal-Fraction-Matching-Cards-260023

Appendix 3-Session 3

Decimats (Roche, 2010)

Figure 2. A blank Decimat.

0.68	31.5	24.2
2.534	3.751	3.51
1.89	24.3	4.018
3.4	2.7	0.608
0.6592	1.5	2.24
2.3378	3.8	2.34
1.89	2.323	4.0
3.45	2.71	2.330

Figure 3. A shaded Decimat (showing 0.125).

Decimal Cards (tenths, hundredths, thousandths)
http://joyin6th.blogspot.com.au/2011/09/same-materials-differentactivities.htm

Appendix 4-Session 4

Decimat Activity (Roche, 2010)

Figure 2. A blank Decimat.

Figure 3. A shaded Decimat (showing 0.125).

Scooter Quest- Interactive Activity

http://www.sheppardsoftware.com/mathgames/decimals/ scooterQuestDecimal.htm

Appendix 5-Session 5

Decimal Bingo

http://www.greatmathsteachingideas.com/wp-content/uploads/2012/10/Untitled.png

7.86	8.434	9.1	9.563
8.9	9.58	10.356	10.7
8.203	10.43	8.7	10.3
9.001	8.373	10.256	8.623

Decipipes Activity

http://saxonslearningblog.blogspot.com.au

References

Downton, A. (2014). EDMA310/360- Tutorial 5 Slides: Planning a unit of work. Accessed: 19 October 2014. Retrieved: http:// leo.acu.edu.au $/ \mathrm{mod} /$ resource $/$ view.php?id $=722523$

Roche, A. (2010). Decimats: Helping students to make sense of decimal place value. Australian Primary Mathematics Classroom. Vol. 15 (2). Retrieved: http://files.eric.ed.gov/fulltext/EJ891799.pdf

